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Bounds on the heat transport in a porous layer are derived using the variational 
method of Howard (1963) and Busse (1969b). The relatively simple structure of 
the variational problem in the case of porous convection allows one to formulate 
the theory more simply and to investigate some of the mathematical questions 
posed by the earlier work. A precise characterization of the solution with N wave- 
numbers is given. The variational problem is solved exactly among functions 
with a single overall wavenumber and this solution is in good agreement with a 
nonlinear perturbation solution of the governing equations and with experiments. 
An N-wavenumber solution is constructed for large Nusselt numbers by 
boundary-layer methods. The asymptotic solution is compared with a numerical 
solution of the problem for N = 2. The comparison supports the boundary-layer 
assumptions introduced in the asymptotic analysis. 

1. Introduction 
The objective of the bounding theory of turbulence is to provide bounds on 

average propei%ies of statistically stationary turbulent flows. The average pro- 
perties are regarded as functionals of the turbulent velocity field which can be 
defined for more general vector fields. The bounds are derived by determining the 
extremum of the functional among a class of vector fields which includes all 
statistically stationary solutions of the basic equations of motion. By restricting 
the fields admitted into competition for the extremum to those which share 
with the solutions an ever greater number of properties one can improve the 
bounds and bring them into ever closer correspondence with the observed 
values. 

Howard (1 963) introduced this approach when he derived upper bounds for the 
heat transport by convection in a fluid layer heated from below. It was shown 
later by Busse (1969a) that the same approach can be used for a variety of 
turbulent transport processes. For solenoidal vector fields it was found that the 
extremalizing field resembled in a number of aspects the structure of the observed 
turbulent velocity field. The variational problem for the extremalizing fields 
seems well-posed in a class of solutions of many wavenumbera (multi-a solutions). 
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An understanding of these solutions and the strongly nonlinear Euler equations 
which generate them is one object of our study. 

Two considerations have motivated the choice of convection in a porous 
medium as the subject of a detailed study. Although convection processes in 
porous media have been extensively investigatedexperirnentally, no theoryexists 
for the stronglynonlinearregime. The second consideration is that the Euler equa- 
tions for the extremum of the heat transport in a porous medium are very similar 
to those solved by Howard (1963) and Busse (1969 b) .  Yet they are simpler and can 
be analysed in more detail. They represent, possibly, the simplest case in which 
multi-a solutions with a multiple-boundary-layer structure exist. Since the 
boundary-layer theory in the previous work is based on a number of assumptions, 
it is important to verify the assumptions by the comparison with exact analytical 
or numerical solutions. It is of interest that in the porous case an explicit expres- 
sion can be obtained for the single-a solution, characterized by a single wave- 
number and a single boundary layer. A comparison for solutions with more than 
one wavenumber is made possible for the first time by the numerical computation 
of the two-a solution. The results confirm the correctness of the boundary-layer 
assumptions made in the earlier work. 

The paper starts with the derivation of the variational problem in $ 2. In  $ 3 
general properties of the multi-a solutions of the Euler-Lagrange equations will 
be discussed. The derivation of the single-a solution in terms of elliptic integrals 
is described in $4. A simplified small amplitude perturbation analysis of steady 
solutions of the Darcy-Boussinesq equations is also carried out in $4. Com- 
parison of the perturbation solution and the single-a solution shows that there 
is a sense in which the single-a bound is the best possible. The general asymptotic 
boundary-layer analysis for multi-a solutions follows in § 5. The two-a solution, 
characterized by two successive boundary layers, can be regarded as repre- 
sentative of all the multi-a solutions, since it exhibits all characteristic properties 
of extremalizing solutions with more than one wavenumber. The numerical 
analysis of the two-a solution described in 3 6 demonstrates the appearance of 
the boundary-layer structure as the asymptotic case is approached. A com- 
parison with experimental observations is given in $7 .  

2. Formulation of the variational problem 
The configuration to be considered is an infinitely extended horizontal porous 

layer filled. with fluid and heated from below. The layer has thickness d and is 
bounded by two parallel plates. The upper plate is kept at  a constant temperature 
Tl and the lower pIate at temperature T,. To obtain a non-dimensional descrip- 
tion of the problem we shall use d, d2 /K  and (T, - TI) R-l as units for length, time 
and temperature, respectively, K being the thermal diffusivity of the porous 
medium and R the Rayleigh number, to be defined below. The Darcy-Boussinesq 
equations for convection in a porous layer are 

B(au/at + u . VU) + V p  - k(T - Tl) + u = 0, 

aT/at + u . V T  - V2T = 0, 

(2.1) 

(2.2) 
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where k denotes the unit vector in the direction opposite to that of the force of 
gravity. The equations (2.1) and (2.2) differ from the Boussinesq equations for 
convection in an ordinary fluid layer only in so far as the frictional force V2u is 
replaced by - u. The solenoidal velocity vector u is defined according to Darcy’s 
law as an average over the microscale of the porous medium. We shall assume 
that the microscale is small enough compared with a.11 other scales used in this 
paper for u to remain a well-defhed quantity. Equations (2.1) and (2.2) were 
first used by Lapwood (1948) and they are the basic equations for our analysis. 
It should be noted, however, that the form of the nonlinear inertial term u . V u  
may be inappropriate since u should be interpreted as the averaged velocity (cf. 
Irmay 1958). Of the two parameters R = ygKd(T2- TJVK and B 3 KK/d2v only 
the Rayleigh number R will enter the analysis and the bounds derived in this 
paper will hold independently of the value of B. The constants y, g, Y and K are 
the coefficient of thermal expansion, the acceleration of gravity, the kinematic 
viscosity and the Darcy permeability coefficient, respectively. The thermal 
diffusivity K is defined as the thermal conductivity of the fluid-solid mixture 
divided by the specific heat and the density of the fluid (see $ 7 ) .  We shall use a 
Cartesian system of co-ordinates with the x axis in the direction of k and the 
origin at the lower boundary. The boundary conditions for the temperature T and 
the velocity vector u are 

1 T = R ,  k.u=O at z = O ,  

T=O, k.u=O at x = l .  
(2.3) 

Since we have used the Darcy constitutive assumption in order to replace V2u 
with -u in (2.1), we cannot impose boundary conditions on the tangential 
components of the velocity vector. 

The goal of the following analysis is to obtain bounds on the heat transport by 
convection under stationary conditions. We define this case by assuming that the 
solutions corresponding to the physically realized convection belong to the class 
S(u, T )  of statistically stationary solutions. This class consists of all solutions of 
(2.1) and (2.2) for which (a) horizontal averages exist and are bounded and 
(b )  horizontal averages are time-independent. Restricting our attention from 
now on to this class of solutions, we indicate the horizontal average by an overbar. 
By taking the horizontal average of (2.2) and subtracting i t  from (2.2) we obtain 
two equations for T and the fluctuating temperature 0 3 T - T :  

u.c7e - a2!Flaz2 = 0, 

a8pt +U .ve-u. ve +u. v!F- v28 = 0. 

d!F/dx = w8- (we> - R, 

(2.4) 

(2.5) 

(2.6) 

Integration of (2.4) yields, after the boundary conditions (2.3) have been taken 
into account, 

where w is the vertical component of u and the angular brackets denote the 
average over the entire layer. By multiplying (2.1) by u and (2.5) by 0 and 
averaging we obtain 

(lUl2> = (we), (2.7) 

((ve[2)+((G3-(~6))2) =  we), (2.8) 
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where we have used the relation (2.6) and the identity 

( Z 2 ) -  (we)2 = ((we- (we))2). 

The heat transport across the layer is given by the mean temperature gradient 
at the boundary: H = R + (we). The function giving the dependence of H on the 
Rayleigh number R for the physically realized convection is the one of foremost 
interest in the problem of porous convection, Since this function cannot be 
determined except for small values of (we), it is important to find bounds on H 
for given R or vice versa. From (2.7) it is evident that H must be greater than R 
except in the case of the static solution, when H is equal to R (Westbrook 1969). 
Though it is physically more natural to start from a fixed value R and find H 
mathematically, it is more convenient to do the opposite. This path leads, as 
Howard first showed, to a precisely formulated variational problem of the type 
which is described below. 

In  formulating the variational problem it is as well to give the variational 
functional a homogeneous form. By using the notationp = (we)  we may combine 
(2.7) and (2.8) into 

We next define a class 246 of admissible functions and vectors : 
- z= (u, e; v .U = 0, u = e = 0 1 , = ,  1, u = o = 01. (2.104 

Among the elements ( u , O ) ~ Z a r e  those which belong to the set Nwhose 
elements satisfy the normalizing conditions 

p = (we>, (lu12) = <we>. (2.10b) 

Every statistically stationary solution is simultaneously an element of X and JK 

(2.11) 

for preassigned values of p 3 0. Since 9 is a homogeneous functional of degree 
zero we may always renormalize the element (G, 8) which gives 9 its minimum 
value over F ,  so as to satisfy the conditions N .  Hence we may obtain a value 
of P which is unique among elements in 2 + M .  Since statistically stationary 
solutions are also elements of z + N  we have, using (2.9) and (2.11), R > F(p) .  
We may thus conclude that statistically stationary convection with heat transport p 
cannot exist when R < F ( p ) .  

The variational problem can be simplified considerably by the introduction of 
the poloidal (corresponding to x) and toroidal (corresponding to $) decomposition 
of solenoidal vector fields: 

Consider next the variational problem 

F ( p )  = minS[u, 8 ;  p] 
2 

u = V x (V x kx)+V x k$ E u,+u,. 

Since w, = 0 we have 
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It followsfrom the orthogonality condition(u, .u2) = 0 that we may write (2.9) as 

ana that the minimum of F in Z must be taken over fields with u2 = 0, that is 
$ = 0. With $ = 0 the Euler equations for x and 8 minimizing .F become 

((V812) V2w - [(F +p)  (we) -pwe] A,8 = 0, 

(I k x VVxl’) V28 + [(F +/A) (we) - p a ]  w = 0. 
(2.12) I 

Our problem may now be formulated as: given p find w, 8 and the smallest value 
of F which satisfy (2.12), the zero-mean condition and the boundary conditions. 
In  the next section we take preliminary steps toward the resolution of this 
problem. 

3. Multi-a solutions 
The Euler equations (2.12) admit a large manifold of solutions, each corre- 

sponding to a relative extremum of the functional S. We expect to find the 
minimizing solution among a class of solutions for which the horizontal depen- 
dence is characterized by a discrete wavenumber. This is true when ,a = 0 and is 
the hypothesis for the calculation to follow. In  the general case we assume 

where q5n satisfies the equation A, 9, = - a: q5% and the orthogonality condition 
q5nq5m = S,,, where Sn, is Kronecker’s delta. The functions W,, 8, and q5n and 
the wavenumbers a,, will depend in general on the parameter N .  This dependence 
will be indicated only when it becomes necessary to distinguish between different 
solutions. 

The solutions of the form (3.1), which we shall call multi-a solutions, have a 
number of interesting properties. We observe that the functional F ( p ,  ~ ( m ,  8cN)) 
is completely symmetric with respect to an interchange of Wn and On. This 
suggests that the minimum may be found among the smaller class of competitors 
for which 

We shall prove this conjecture by adapting the idea of a proof originally given by 
Howard in a similar situation. 

The Euler equations for an extremum of the functional F ( p ,  ~ ( m ,  /Ym) can be 
written in the form 

- 

w, = en. ( 3 4  

(3.3) I (02 - a:) w, + a, $en = 0, 

(D2 - 01;) 8, + an$W, = 0, 

where 
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and D 3 dldz. Here and in the following the summation over the index v runs 
from i to N unless indicated otherwise. 

For mathematical convenience we have replaced the normalization conditions 
(2.11) by the conditions 

(3-4) ( Wi2/aV + av W:) = C (@~'/a,, + a,, 0:) = 1. 
V V 

In  addition, we can assume without loss of generality that 

z ' 0. (3-5) 
V 

In  preparation for the proof that Wn = On we introduce the variables 

en = &(Wn+8,) and rn = &(Wn- 0,) 

and find from (3.3) that 

(D2-~~)crn+an$cn = 0, (D2-a~)rn-an$rn  = 0, (3.6a,b) 

where qi is given in terms of en and 7% by 

Multiplication of ( 3 . 6 ~ )  by en yields 

and after summation over all n we obtain 

and, analogously, 

where the abbreviation cr2 = Cc: has been used. Equation (3.9) shows that r2 

cannot have a maximum value in any interval on which qi > 0. Since T~ = 0 at 
x = 0 , l  and r2 2 0 we may conclude that 

n 

r 2 = X r k = O  if $ 2 0  for - $ < z < $ .  (3.10) 

We note that $ > 0 at  x = 0 , i .  To prove $ 2 0 throughout [ - +, $1 we show that 
it is not possible to have qi < 0 on some interior interval x1 < x < x2 with $ = 0 at 
x1 and z2. Assume that it is possible. Then we find 

It 

or (3.1 1 a )  
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and similarly 

(3.11 b)  

Since q5 < 0 in the open interval (z1,z2), integration of (3.8) over the closed 
interval vields 

(3.12) 

where the inequality is strict because a2 and a, are positive. From (3.11 a,  b)  and 
(3.12) we conclude that 

(3.13) 

Hence dr2/dx has a strictly positive increase over any interval with q5 < 0. Since 
it cannot decrease over intervals with #I 2 0, as is evident from (3.9), drz/dx 
shows a strictly positive increase from z = 0 to z = 1. Since r = 0 at  x = 0 , l  we 
cannot have q5 < 0 and it follows that r2 = 0, proving (3.2). 

Using (3.2) we rewrite the variational functional (2.9) for the multi-a solutions 
in the form 

F ( p ,  e ( q  a ( N ) )  = {[I(a(m, e(N))y+,~(()e(N)p- (le(N)lz))2)}(1~N)12)--2, (3.14) 

where 

To shorten the notation we have introduced the N-dimensional vector W), which 
has the functions O,(z) as its components. Similarly, we have combined the wave- 
numbers a, to form the vector a(m. The index (N) will be dropped in the following 
except when different multi-a solutions have to be distinguished. The minimum 
of the functional (3.14) for a given N will be denoted by PN(p). The symbol F ( p )  
will be reserved for the absolute minimum among the clasb of minima FN(,u). The 
Euler equations for the minimum FN(p) of the functional (3.14) are 

0; - 4 en + (%/q(& + 1u) <I 01 z, - iu I81 2} 8, = 0 (3.15) 

and the corresponding boundaxy conditions are 

O,(O) = 19,(1) = 0 for n = 1, ..., N .  (3.16) 

The symmetry of the equations suggests that the solutions O,(z) are either sym- 
metric or antisymmetric with respect to x = +. To prove this we separate the vector 
6 into its symmetric and antisymmetric parts: 

e = es+ea, 
with €Is= & { e ( z ) + ~ ( l - z ) )  and 8, = +@(z)--O(l-z)}. The functional (3.14) 
obviously satisfies the rela tion 

with 
~ ( p ,  6, a) > 9 (P, 68, Ga, a) 

h 

g= ([l(a,es)+I(a,e,)12+~(()es12+ leal2-  <lesI2+ lealz)>)2)>>~ <lesI2+ lea12)-2 

(3.17) 
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since .% is the same as expression (3.14) except that the positive term 

4P ((8,- e,I2) (I @,I + I %I 2>-2 (3.18) 

has been neglected. We consider 2 as a functional of the symmetric vector 8, and 
the antisxmmetric vector 8,, and obtain as necessary conditions for the minimum 
P(p) of 9 the Euler equations 
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(3.19) 

with 

Prom (3.19) we obtain 

and by integration of this relation over the interval 0 < z < 4 we find that 

elne,, - 13:~ esn = o 

esm(4)  = 0, (3.20) 

since 0, as well Oan vanishes at the boundaries x = 0 , l .  Relation (3.20) requires 
that either Oan or e,, vanishes together with its derivative at  z = Q since by 
definition 6,,(+) = 8:,(+) = 0. Because $ is non-singular, however, any solution 
of (3.19) which vanishes together with its derivative at some point must ̂ vanish 
identically. Hence we can conclude that the vectors 8, and 8, minimizing 9 have 
the property 

e,.e, 0. (3.21) 

Since the functionals .% and 9 become identical f2r vectors 8, and 8, with the 
property (3.21), the vectors e, and 8, minimizing 9 m u s t  also minimize g. This 
proves the conjecture that the minimizing solutions 8, of the Euler equations 
(3.15) are either symmetric or antisymmetric with respect to z = Q. 

It is worth pointing out some further properties of the multi-a solutions. 
Without loss of generality we can assume that all wavenumbers a, are diflerent. 
If two or more wavenumbers are equal the problem can always be reduced to a 
case in which all wavenumbers are equal, as the following consideration shows. 
Suppose that a, = a,. In  this case it is readily seen that the corresponding solu- 
tions and 8, of (3.15) satisfy the relation 

ep, - ep, = 0, 

which by integration and use of (3.16) yields 8;8, - 19; 8, = 0 or (8,/8,)’ = 0 in any 
interval with non-vanishing 8,. Hence 8, must be a multiple of 8,, say 8, = 78,. 
Then the vector W N )  of N functions can be reduced to a vector of N - 1 functions 
by neglecting 8, and a, and replacing 8, by el( 1 + y2)t.  

The solutions of (3.15) are characterized by two orthogonality relations. The 
first relation is obtained by multiplying the equation for 8, by a;W, and the 
equation for 8, by a;Wn. Averaging the equations and subtracting them yields 
after integration by parts 

- an {(e; 8;) - am a, (em e,)} = 0. 
am a n  
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Since a, $. a,n we have 
(eke;) - a,a, (emen) = 0. (3.22) 

The other relation is obtained by the same process without using the factors 
0c;l and a;l, respectively: 

( { ( F N  +P) (181 ') -P  181 - (an + am)  11 On Om> = 0. (3.23) 

We call (3.22) and (3.23) orthogonality relations although 6, and 6, are not 
necessarily orthogonal functions in the usual sense. 

The wavenumber an can be determined by minimizing the functional (3.14) as 
a function of a. The condition 8F(pu, 8, a)/&, = 0 yields the wavenumber formula 

a; = (6;2)/(6;). (3.24) 

In  differentiating the functional we have assumed that the functions 6, satisfy 
the Euler equations. Hence the implicit dependence of the functional on an 
through em(.) can be neglected since the function is stationary with respect to 
variations ofthe function On(a). Formula (3.24) shows that relation (3.22) includes 
the case m = n if the minimizing value of the wavenumbers are used. The inter- 
pretation of (3.24) is that the dissipation (]6;12) associated with the vertical scale 
is equal for each function 6, to the dissipation a: (6;) associated with the hori- 
zontal scale. 

Finally, we note that the multi-a solutions have an energy integral which may 
be written a s  

When the an have their optimal values, given by (3.24), the right-hand side of 
this equation vanishes. 

4. The single-a solution and the situation for small ,u 
When ,u = 0 we must solve the linear problem 

with 6, = 0 at x = 0 , l .  From (4.1) we see that all even derivatives of 6,n(z) vanish 

at the boundary. Hence 6,(z) can be developed as em(z) = C A,,, sin nnz, which 

together with (4.1) implies that 

m 

n=l 

On the other hand, on multiplying (4.1) by ern integrating and summing over m 
we find that 

F~ = q ( p p ) 2 .  (4.3) 
34 F L i x  54 
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Hence the minimum of $$, = n2n2/am + a, over a, is FN(n) = 4n2rr2 for a, = nn. 
The expression FN(n) reaches its lowest value FN = 47r2 for n = 1, a, = rr and 
e,(x) = A,,sinrrz. The minimizing solutions O,(x) are therefore identical apart 
from a multiplicative constant. The number N of different horizontal scales a;l 
required for minimizing F N  when p = 0 is just one: N ( p )  = 1 when p = 0 and 
min FN = E;. 

Now we shall seek the minimum Fl(p) of g1[O; a,p] over functions with a 
single wavenumber a. More than one wavenumber is required to minimizeg when 
p is large. When N = 1 we may write (3.25) as 

N 

Il((DB)2/a - ae2) + (Fl f p )  (e2) O2 - $p04 = A = constant, (4 .4)  

where Il = ((08)2/a+a82) 

and, with 6 normalized so that the maximum value of 0 is one, 

A = - all+ (F1 +/A) (e2) - 4,~. 

I1/a = 2 (/32), aI1 = 2 ((Df3)2). (4 .6)  

(4.7) 

where k2 = p/(2(F1 +p) (02) - 4 ((D8)2) -p] and h = p/4k2 (02). 
To write the required result we employ the complete elliptic integrals K(k2)  

and D(k2).  Here k lies in the range [0,1]. One finds by integration of (4.7) 
that 

where n is the number of half-periods of O on 0 < z < 1, 

(4.5) 

The wavenumber a is to have the value given by a2 = ((DO)2)/(02) from (3.24).  
This implies that, 

Elimination of a in (4.4) with the constants m given in (4 .5)  and (4.6) gives 

(Df?)2 = h( 1 - 82) (1 - k V ) ,  

A* = 2nK(k2) ,  (4.8) 

dz 2n (e2) = 2 n I 1  0 W2-&9 = zD(k2) = D(k2)/K(k2) (4.9) 

and 

s,'  D DO)^) = 2 n h ~ ~ ( 1 - ~ 2 ) ( 1 - k 2 8 2 ) - a e  a x  = 2nh* [ ( I - ~ ~ ) ( I - ~ w ) I + ~ o .  
ae 

The last expression may be reduced by a standard transformation for elliptic 
integrals (Hancock 1958, p. 63)  to 

( ( D I ~ ) ~ )  = 4naK[5K - +(k2+ 1 )  D ] .  (4.10) 

Using the expressions (4 .8 ) ,  (4 .9 )  and (4.10) in the definition of k2 and A, we have 

-F; = ?n2 ((k2 + 1) K 2  + K3/D - 3k2DK} (4.11) 

and p = 16n2k2DK. (4.12) 

Equations (4.11) and (4.12) give the value F1(p, n)  parametrically. The smallest 
value Fl(p)  of Fl(p, n)  is taken on for n = 1 .  

We have therefore shown that among functions with a single wavenumber 
(chosen optimally) the minimum value Fl(p)  of the functional S1 is given para- 
metrically by (4.11) and (4.12) with n = 1. Statistically stationary convection 
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with heat transport ,u and a single overall wavenumber cannot exist when 
R < Fl(,u). The curve Fl(p) for N = 1 is given in figure 6 below. Evaluation of 
(4.11) and (4.12) in the asymptotic case of largep yields Fl(p) = +&ui. This result 
can also be obtained directly by constructing a boundarj -layer analysis similar 
to that given by Howard (1963). The boundary-layer thickness is proportional 
to ,ud. Since this case is included in the more general analysis of 3 5,  we shall not 
pursue this problem further at  this point. 

When ,u = 0, k2 = 0 and one finds that Fl = 4n2. The slope of tbe heat trans- 
port curve at  the point p = 0 is 

(4.13) 

We shall use this result to show the following. Of all the small statistically stationary 
solutions of the Darcy-Boussinesq equations in the case B = 0, two-dimensional rolls 
maximize the heat transport. 2foreover, the values 

I i ; ( O )  = 479, dF1(0)/dp = 8 (4.14) 
are the best possible. 

The demonstration consists of displaying an actual solution of the nonlinear 
convection problem with the asserted properties. Consider the problem posed by 
(2.1) and (2.2) in the case B = 0. Equation (2.1) shows that k . V x  u = 0. Hence 
the solenoidal field u can be written as a poloidal vector field : 

u = - V X  ( V x k f )  S f .  (4.15) 

On forming the vertical component of the curl curl of (2.1) we find 

A2(V2f + T - Tl) = 0. (4.16) 

Because u is periodic, or almost periodic, with zero mean and because T is 
bounded, the integration of (4.16) with respect to the horizontal co-ordinates 
yields 

wheref(z) is an arbitrary function of z. We notice that an arbitrary function g(z) 
can be added to f without changing u. We use this freedom in the definition 
(4.15) to choose g(z) such that 

V 2 f + T  = T l + R ( l - z ) .  (4.17) 

Since the right-hand side in this relation represents the temperature distribution 
in the static case, u = 0, - V 2 f  describes the deviation of the temperature from 
the static distribution. Using (4.17) to eliminate T from (2.2), we obtain 

which has to  be solved subject to the boundary conditions 

f = V * f  = 0 at z = 0 , l .  

(4.18) 

(4.19) 
34-2 
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We shall construct a steady solution of (4.18) and (4.19) as an analytic pertur- 
bation in the Nusselt number Nu, which is defined as the ratio of the total heat 
transport divided by the heat transport in the static state: 

We set 2 = E X ,  where e2 = Nu - 1. Then we have to solve 

V4x + RA2 x = € 6 ~ .  V V ~ X ,  (4.20) 

x = V2x = 0 at x = 0-1. 

(V2xAZx) = R. 
for functions x of norm 

(4.21) 

We seek the solutions ~ ( x ,  y, x ,  E )  and R(E) of (4.20) and (4.21) as a Taylor series 
in E. For the first three Taylor coefficients we have to solve 

(4.22) 

(4.23) 
V4~(1) + R(0)A2 ~ ( 1 )  + RUA2 ~ ( 0 )  = S x ( 0 ) .  VV2x(O), 

(V2x(1)A2x(0) + V2x(0)A2x(1)) = B(1); 
and 

V4x(2)+R('3A2~(2)+ 2B1)A2x(')+ R(2)A2$O) = ~{SX'~)'. VV2x(1)+6~(1). VV29'))). (4.24) 

Of course, x(n) = V2xtn) = 0 at z = 0 , l .  The solution of (4.22) which is to be 
perturbed is 

(4.25) 

are determined, respectively, by solvability conditions 

x ( O )  = (8t/n) sin nx cos nx, R(O) = 4n2. 

The values R(l) and 
which must be applied on the right-hand sides of (4.23) and (4.24): 

R(1) (V2x(0)A2~(O)) = (V2~"NS~(O), VV2xtO)) (4.26) 

and +R(2)(V2~(o)A2~(o)) = (V2x~o~S~~o~.VV2~~1~)+(V2~(o)Sx(1).VV2x(o)). (4.27) 

The right-hand side of (4.26) and the second term on the right-hand side of (4.27) 
integrate to zero; so 

(V2X'O)fjX'". VV2X'O)) = g (SX'1'. V(V2 x (0) ) 2 ) = (V.SX'1)(V2X'O))2) = 0. 

Hence R(1) = 0. 

The evaluation of the right-hand side of (4.23), 

6x"J). VV2x"J) = - 8n3sin 2772, 

shows that ~ ( 1 )  = ( - 1/2n) sin 2nx 

is a solution of (4.21) which satisfies all required the conditions. Next, one finds 
from (4.27) that 

4n2R(2) = - 4 ~ 2  ( ~ ( ' J ) ' d 3 ~ ( 1 ) / & 3 )  = 16n4. 
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Hence R(e) = 4n2(1+&2+...) 

and dE(s)lds2 = dR/dNu = 2 7 ~ ~ .  

Since e2R = (wT) = p it follows that dEldp = B at p = 0. 
Summarizing the results, we have found that roll convection exists for small p 

in the case B = 0 with the following dependence of the Rayleigh number on the 
convective heat transport p: 

R(p) = 4n2+ Qp + O(p2). 

We have also found, see (4.13), that 

F,(p) = 4772+&p+O(p2). 

R < F(p) = minFN(p) < Fl(p). 

F ( p )  = 47r2 + i p  + O(p2). 

Recall that statistically stationary convection cannot exist when 

N 
Hence we have for small enough ,LL 

This proves that at small enough p the single-a bounding solution gives the same 
heat transport as an exact steady solution in the case B = 0. 

5. Boundary-layer analysis of multi-a solutions 
No explicit solutions of (3.15) are known for N > 1. However, when p is very 

large we may anticipate that the solution with many wavenumbers, like the 
single-a solution given in 3 4, has a boundary-layer structure. It is clear already 
from the form of gN expressed in (3.14) that when ,u -+ 00 the quantity 

PU((/0l2- (1012))2) 
can be bounded only if 1012 -+ (1012) over most of the domain 0 < x < 1 of 0(z ) .  
By adopting, for convenience, the normalization 

(le12> = 1 ( 5 . 1 ~ )  

we see l0(z)l -f 1 everywhere except in boundary layers, in which (0 (x) (  drops to  
its zero value at x = 0 , l .  

For the single-a solution the structure of the boundary layer is determined from 
the requirement that Fl be a minimum. This requirement can only be satisfied 
when the small boundary layer in which O2 drops from its interior unit value is 
large enough for the contributions of the large derivatives to I 2  to be of the same 
order (p3) as p ((1 - 1 9 ~ ) ~ ) .  

The same sort of minimizing balance can be anticipated in the multi-a case. - 
Here again we must have 

in the interior. To prevent the terms with derivatives in 1 2  from growing more 
sharply than p (( 1 - 1012)2) the solution will develop a boundary layer for ]el2 
of order p+N, where rN is a positive number to be determined. 

The difference between the multi-a solution and the single-a solution is just 
this: the presence of the many different functions and wavenumbers allows for the 
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development of boundary layers within boundary layers; indeed our formal 
calculation shows that the solution does develop a nested sequence of N boundary 
layers in which the sharp rise of 6'; takes place in an interval of the same order 
(in p)  as the slow fall of the function 8;+,. This process has the overall effect of 
allowing one to extend closer to the boundaries the region on which (5.1) holds 
while, at  the same time, holding the dissipation integrals I 2  to within the same 
order of pl-rfl as the term ,u (( 1 - IS12)2>. It is the presence of the different hori- 
zontal scales ail  which moderates the increase of the dissipation 12. Indeed 
inspection of (3.14) shows that 1 (and FN) is minimized when the horizontal 
scale a;l equals the vertical scale of the functions 8,. Hence we know that the 
functions 0; with the steepest boundary layers will also have the smallest hori- 
zontal scales a;l. 

In  view of the foregoing discussion it seems plausible to postulate that each 
function O;(z) has its own boundary layer. The boundary layer for 0; is closest to 
the wall and has a steep rise of order ,u-"~. The fundion 0%-1 also has a boundary 
layer but here the rise of Ok-, is less sharp and is of O ( , c r X - 1 ) ,  where < r N .  

Unlike the boundary-layer solution for the single-a case one cannot anticipate 
that 8, with N > 1 will tend to one in the interior. If this were the case one could 
not satisfy (5.1) with non-zero interior values for the other functions 0,. More- 
over, the contribution a, (&) has to be kept small because of the relatively large 
value of a,. Hence it is plausible to suppose that 0% first rises and then falls to 
zero. It is clear from what we anticipate for the sizes ,u-rN and p-fl-1 of the two 
layers closest to the wall that, asp --f co,t9$ may experience a very rapid rise on an 
interval of order p-rl?' on which ON-l is barely different from zero, and a relatively 
gentle fall t o  zero an interval of order , L ~ - ~ J ~ - I  on which ON.-l is still rising 
rapidly relative to the rate of its own subsequent gentle decline in the layer of 
U ( , K ~ N - Z ) .  The same sharp rise followed by gentle fall is anticipated of the 
sequence O$, 0$-1, ..., Oi, Oi-l ,  ... until the actually rapid but relatively (to 8;) 
slow rise of 0; to its interior value 0; 2 1 is complete. 

We shall now show how the description of the multi-cc. solution for large p just 
given does arise from formal analysis. The hypothesis whose consistency is being 
tested is that 8, rises in the nth boundary layer and falls to zero in the (n - 1)th 
boundary layer. Hence, each of the functions differs from zero essentially only 
in two subsequent boundary layers and it is convenient to separate the rising and 
falling parts. Thus we let 

where n = 1, ..., N ,  r, > and (, = zprn (5.3) 

#i + iJi+l = i for x = ~ ( p - r n )  (0 < n < N )  (5.4) 

and 8; = I for z = ~ ( p - r o )  r, = o (5.5) 

is the nth boundary layer co-ordinate. In  the limit ,LL -+ GO the relations 

are implied by (5.lb) and (5.2). It is this feature which allows one to satisfy 
(5.1b) close to the wall. Only in the Nth layer is 1 - 8% > 0 when p + co. 



Heat transport in a porous layer 535 

We note that when is fked and p + 00 

{ n-1 = l&pTn-i-rn --f 0. 
Hence we must have 

(5.6) 
On(0) = 0, On(..) = I for n = I, ..., N ,  

On(0) = 1, iJn(a) = o for n = 2,  ..., N .  

Since the problem is symmetric with respect to the two boundaries, we assume 
that the same description holds for the boundary layer at x = 1 with 1 - x replacing 
x in the definitions (5.2)-(5.4).  

Returning now to the expression (3 .24)  for the best a, (5.2) and (5.3) we find 
that 

= prn-rn-ibi ,  (5.7) 

are independent of p at large p. Here, the factor 2 arises from the fact that there 
are two boundary layers, one on each wall. We have eliminated 

by using (5.5). 

(5.4) and (5.5) to eliminate &(m = 1, ..., 8). We find that 

iJi(Cn-1) = 1 - OLl(Cn-1) 

To determine the exponents we insert (5.3)-(5.7) into (3.14),  let p +- 00 and use 

Differentiation of (5.9) with respect to the parameters rm shows that a minimum 
can be reached only if all exponents of p in the terms contributing additively to 
the right-hand side of (5.9) are equa,l: 

1-rN = r N - r N - 1  = . m . r 2 - r l  = r1- 

This relation leads to the solution 
r, = m/(N+ 1) for m = 1, ..., N .  (5.10) 

Now, on using (5.10) in (5.9) we have 

(5.11) 

The minimum of (5.11) is found for functions which satisfy the Euler equations? 

B~+b,b , ,O,  = 0 (m = 1, ..., N -  1), ( 5 . 1 2 ~ )  

t These equations can also be derived by introducing the boundary-layer assumptions 
in (3.16). This approaclh was used in the treatment of the analogous problem of ordinary 
convection by Busse (19696). 
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and 

subject to the conditions (5.6). The best values of b, are given by (5.8). 

F. H .  Busse and D .  D .  Joseph 

( f / b , )  @& + ( I  - $8) ON = 0 (5.12b) 

A continuously differentiable solution of ( 5 . 1 2 ~ ~ )  b)  and (5.6) is given by 

} (5.13) 
+ sin (b,bn+,)& C, for 0 < C, < n/2(bnbn+1)', on= - 

L l  for n/2(bnbn+l)' Cn, 

#N = -t tanh{(+bNf-l)*CN}. (5.14) 

Note that the signs of the functions 0, and 0, remain undetermined. This corre- 
sponds to the property that B,(z) is either symmetric or antisymmetric. Hence the 
representations of On@) at the two boundaries may have opposite signs. Only when 
lower order terms, neglected in this approximation, are taken into account can 
the question of symmetry be decided. 

We next calculaue f, b, and I$,. Using (5.13) and (5.14) we find that 

The parameters b,, n = I ,  .. ., N ,  can be determined either from relation (5.8) or 
by minimizing the functional (5.1) as a function of the b,. In  both cases we arrive 
at eauations of the form 

which yield the solutions 

8 (2n--l)/(N+1) 

b , = Z ( - )  2 3n24N 
for n = 1, ..., N ,  

f =  2Nb1. 
The final expression for FN(p) is 

FN(p) = pl/(N+l)P ( N )  = pl/(N+l)N(N+ I )  4b! = N ( N +  1) ~ ~ ( 6 4 , . ~ / 9 n ~ N ) l / ( ~ + ~ ) .  

(5.15) 

It is of interest to calculate the thicknesses of the boundary layer of the 
minimizing N - a  solution. We define the characteristic thickness z = 8, by the 
property that the arguments of the sin-function and the tanh-function in expres- 
sions (5.13) and (5.14), respectively, assume the value 1;  
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It goes without saying that the solution given just above is by no means 
established rigorously. It is, however, possible to test this solution numerically. 
We turn next to this test. 

6. Numerical computation of the two-or. solution 

tion condition (5.1) by 

Using this condition and relation (3.24) we rewrite (3.15) in the form 

For the numerical solution of (3.15) it is convenient to replace the normaliza- 

(let2> = P. (6.1) 

an C (%a> 

K-Ge,+ ,~a , (~~ )  ' (R+Z[(6&)-I93)On = 0 (6.2) 
m 

with a, = ( e ; y  (e;)-s. 
We expand each function 13, in terms of a complete system of orthogonal func- 
tions which satisfy the boundary conditions at x = 0 , l .  The simplest system of 
this kind is provided by the trigonometric functions. Hence we obtain 

either 

or 

8, = ~ a a , , s i n ( 2 p - l ) n z ,  

19, = C aBn sin 2pn2, 
B 

P 

(6.3a) 

(6.3b) 

depending on whether 0, is symmetric or antisymmetric in x .  In  analogy with 
linear eigenvalue problems it seems likely that symmetric and antisymmetric 
forms of 6,  are alternating. However, we have not been able to  prove such a 
property. The numerical investigation shows that the two-a solution consists 
of a symmetric function 6,  and an antisymmetric function 02. All attempts to 
generate a two-a solution with symmetric functions 0, and 62 failed in the region 
of Rayleigh numbers R which were numerically accessible. 

The numerical determination of the two-a solution proceeds by multiplying 
equations (6.2) with 2 sin (2v - 1) nx and 2 sin 2v7r.z after the representations (6.3a) 
and (6.3b) for 8, and 8,, respectively, have been introduced. Averaging of the 
equations yields a system of algebraic equations for the unknown coefficients avn. 
These equations are solved by a relaxation process. The (m + 1)th approximation 
for the unknown aun is obtained from the mth approximation a!$ by replacing the 
zero on the right-hand side of the equations by 

(asy+1)-a$)) [(av- 1)2n2+a:] h-1, 

and (a:?+,) - a::)) [(2v7r)2 + a$] h-1 

for n = 1 and 2 respectively. This relaxation process resembles a time-dependent 
problem in which a non-stationary solution approaches the stationary solution 
asymptotically, starting from arbitrary initial conditions. The step size h has 
to be chosen sufficiently small to ensure numerical stability. The number of 
equations to  be integrated has to be finite, of course. The number of coefficients 
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1 .o 

V I  I I I I I t  I I I I ' d  I 
0 0.05 0.1 0.15 

z 

FIGURE 1. The two-a solution. Graph of the functions O,(z) and O&) for 
R = 50+. __ , numerical computation ; - - - - boundary-layer theory. 

1 .c 

0.f 

0 0.05 0.1 
z 

FIGURE 2. The two-a solution as given by numerical computation. The assumption in the 
boundary layer that 0: + 0: fi: 1 in the boundary region where eZ, and 0: are non-vanishing 
seems to be valid here even though R = 50na is not yet asymptotic. 
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a,, and a,, which have been taken into account is the same. We call this number M .  
For relatively low values of R good convergence has been obtained for M = 12. 
In the case of higher R the boundary-layer structure poses difficulties. Even for 
M = 30 the Gibbs phenomenon caused by the steep slope at  the boundary is still 
noticeable at  R = 50n2. Since the step size h has to be decreased as the number 2M 
of equations increases, the limitations of computer time did not allow us to carry 
the computations much further. 

Apart from the oscillations caused by the truncation, the comparison in 
figure I shows that the numerical results and the boundary-layer theory agree 
reasonably well, even though the Rayleigh number R = 50n2 can barely be 
regarded as representative for asymptotic values. The main difference seems to 
be that the numerical representation of 8, does not show a sudden drop to zero, 
like that assumed in the boundary-layer analysis. In  fact, since it is likely that 
solutions 8, of (6.2) are analytic functions of z, it must be assumed that they are 
non-vanishing throughout the layer except for discrete zeros. The numerical 
calculations indicate, on the other hand, that 8, approaches zero sufficiently fast 
for the contribution 8; in the nonlinear term of (6.2) to become negligible at 
about the same point as that at  which 6, vanishes. Since only (3; is of importance 
as far as the minimum of the functional is concerned, the assumption made in the 
boundary-layer analysis seems to be well justified. The numerical dependence of 
8: and 8; and the sum 8: + 8; are shown in figure 2. 

The results for the upper bound on the Nusselt number N u  = I +,u/R are 
shown in figure 3 in comparison with the asymptotic relations in the cases 
N = 1 and 2 derived by the boundary-layer analysis. In  contrast to the finite 
change in slope at  the transition from N = 1 t o  N = 2 suggested by the asymptotic 
results, we find that a smooth transition takes place. As the Rayleigh number 
approaches R, = 113 from above, the function 0, tends gradually to zero. 
Throughout the range in which the two-a solution exists the value p(,)(R) is larger 
than the value ,&)(A). The dependence of the wavenumbers a?), a$,) and ah2) on R 
is shown in figure 4. In  accordance with the properties of the two-a solution 
discussed above, the value a$,) has to merge with a$,) as the Rayleigh number R, 
is approached. Because of the gradual merging of the two-a solution with the 
single-a solution the numerical scheme described above is not well-suited for the 
determination of the critical value R, of the two-cr solution. For the latter purpose 
a linear perturbation analysis was employed. The equation 

was solved by a Runge-Kutta integration method using the boundary conditions 
8, = 0 at z = 0, Q. In  place of the solution 8, in terms of elliptic integrals derived 

8, z 2K tanh KZ in $ 4  the approximation 

with K given by R = 8K(4K- 6)/(3K- 6) was used; this differs from the exact 
solution by less than a fraction of 1 % for Rayleigh numbers in the neighbourhood 
of R,. The calculations established that the lowest value of R at which a solution 
of (6.4) exists is R, = 113.07, corresponding to a wavenumber a, = 11-296. The 
x dependence of 8, is shown in figure 5.  

I 
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t 

0 0.1 0.2 0.3 0.4 

z 

541 

5 

FIGURE 5. The form of Oiz)(z) at  R = 113, when the two-a solution first appears as an 
infinitesimal perturbation of the single-a solution (see equation (6.4)). Oiz) has been 
normalized by setting dOy(O)/dz = 1. 

7. Comparison with experiment 
I n  figure 6, we have compared the bounds given by the single-a and the two-a 

solutions with experimental values (Schneider 1963; Elder 1967; Katto & 
Masuoka 1967; Combarnous & LeFur 1969). Avery wide range of porous materials 
is represented in these experiments. These experiments are in good agreement 
with the theoretical stability results which give instability (Lapwood 1948) when 
R > 4n2 and global stability (Westbrook 1969) when R < 4n2.t 

The very good agreement between the observations and the theoretical single-a 
bound Fl which is evident when R c 11 3 is supported theoretically by the result 
summarized by (4.16). The excellent agreement between experiments and the 
single-a solution for lo4 > R > 113 is not explained by the present theory since 
at R = 113 the single-a solution bifurcates and the two-a solution is then the 
relevant theoretical result. At yet higher values of R we would expect the relevant 
result to be an N-a solution with successively higher values of N .  

Though the quantitative agreement between the observations and the two-a 
solution is not good the experiments of Combarnous & LeFur are in qualitative 
agreement with the present theory in the following sense: both theory and 
experiment indicate that at a sufficiently high Rayleigh number a bifurcation of 
the convective motion into a new motion of more complicated form occurs. In  the 
theory the more complicated motion is the two-a solution, which comes in at 
R z 113 and Nu M 3.8. In  the experiments this new motion manifests itself in a 

t All but the first mentioned in the list of experiments report errors of about 10% in 
the determination of the instability point and the heat transport curve. These are attri- 
buted by Elder t o  difficulties associated with determining the thermal conductivity of the 
saturated medium. It is necessary in porous materials to take the thermal diffusivity as 
K = k,/(pC,),, where k, is the conductivity of the fluid filled porous solid and (pC,), the 
density times specific heat for the fluid. Katto & Masuoka show that this definition of 
diffusivity allows one to bring their data, and that of earlier expe~ments, into agreement 
with theory. The non-uniformity of the conduction gradient in intrinsically non-uniform 
porous media is also cited as explanation of the observed small deviations from theory. 
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103 

lo2 

Nu 

10 

1 

R 

FIGURE 6. Comparison of the single-a Nusselt-Rayleigh number curve (solid line) 
with experinients (shaded area). - - -, two-or. solution. 

change in the slope of the heat transport curve at  R M 280, Nu M 6, a pheno- 
menon which is well known in regular convection and which seems also to 
occur here in the porous case (see Combarnous & LeFur, figures 2 and 3). 

In  comparing the bounding theory with experiment it is as well to keep in mind 
three points. (i) For high Rayleigh numbers ( >  lo6) the experimental data 
correlate better with fluid parameters alone. In  this regime, according to the 
rough estimates of EIder, the " boundary-layer thickness is somewhat smaller 
than the scale of the porous medium". One would not expect the Darcy- 
Boussinesq equations to hold in these circumstances. (ii) At Reynolds numbers 
in excess of O( 1) based on a pore diameter the form of the Darcy resistance has 
a more complicated structure than the linear law which leads to (2.1) (see 
Irmay 1958). (iii) Scaling of the Darcy-Boussinesq equations* indicates that the 
parameter B is very small in most materials. The results of the present analysis 
apply uniformly to all values of B. An analysis in which B = 0 at the start is 
presently in progress. 
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